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Application prospective of nanoprobes 
with MRI and FI dual-modality imaging 
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Abstract 

Breast cancer (BC) is a serious disease to threat lives of women. Numerous studies have proved that BC originates 
from cancer stem cells (CSCs). But at present, no one approach can quickly and simply identify breast cancer stem 
cells (BCSCs) in solid tumor. Nanotechnology is probably able to realize this goal. But in study process, scientists find 
it seems that nanomaterials with one modality, such as magnetic resonance imaging (MRI) or fluorescence imaging 
(FI), have their own advantages and drawbacks. They cannot meet practical requirements in clinic. The nanoprobe 
combined MRI with FI modality is a promising tool to accurately detect desired cells with low amount in tissue. In this 
work, we briefly describe the MRI and FI development history, analyze advantages and disadvantages of nanoma-
terials with single modality in cancer cell detection. Then the application development of nanomaterials with dual-
modality in cancer field is discussed. Finally, the obstacles and prospective of dual-modal nanoparticles in detection 
field of BCSCs are also pointed out in order to speed up clinical applications of nanoprobes.
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BC is serious malignant tumor to threat lives of women. The 
new cases reach 1,300,000 annually worldwide. Despite iden-
tification and treatment technologies have achieved great 
progress, BC is still the second largest cause of tumor-related 
deaths of women [1]. BC does not have any symptom at early 
stage. The unformed nodules are too small to be perceived 
in clinic exams. Usually when patients find tangible lumps, 
metastasis can happen in the whole body and tissue-focused 
therapy is highly likely to fail [2, 3]. Therefore, the diagnosis 
and cure of BC at early stage is highly necessary to decrease 
mortality and improve the quality of the lives of patients.

Breast cancer stem cells
With accumulating basic and clinical knowledge, the 
treatment technologies of BC are continuously created, 
and survival period of patients is gradually prolonged. 

Although the 5-year overall survival of BC reaches 91 % 
[1], it is still unavoidable that about 30  % patients hap-
pen recurrence and metastasis [4]. In recent years, scien-
tists find that BC is a typical disease of stem cells, whose 
recurrence and metastasis are close related to the CSCs 
(Fig. 1) [5].

CSC hypothesis proposes that one population with rare 
quantity have the capability of self-renewal, proliferation 
and high resistance to chemotherapy drugs [6]. The CSCs 
hypothesis supplies a new clue for diagnosis and therapy 
of cancers. In 1997, Bonnet et  al. [7] firstly indentified 
a common immunophenotype of leukemic stem cells 
with self-renewal potential. Therefore, CSC existence 
was firstly proved. In 2003, AI-Hajj successfully isolated 
BCSCs from human BC cell line. One thousand of these 
cells were sufficient to generate tumors when xenotrans-
planted into NOS/SCID mice, although around fifty 
thousand were needed in the unsorted population. That 
work demonstrated that BC originated from BCSCs [8].

The proliferation of BCSCs is disordered and out 
of programming, and BCSCs lack differentiation and 
mature capability. Moreover, BCSCs can accumulate 
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replication error, furthermore, lead to tumor occur-
rence. BCSCs can also escape chemotherapy, achieve 
drug resistance ability through mutation, and accelerate 
self-renewal process after drug therapy [9]. These factors 
promote breast cancer recurrence. In addition, activ-
ity of BCSCs can enhance and ratio of side population 
will increase after radiation treatment. Furthermore, BC 
has capability to resist radiotherapy [10, 11]. Although 
BCSCs play critical roles in occurrence, development and 
recurrence of BC, the amount of BCSCs in tumor tis-
sue is less than 2  % [12]. Therefore, isolation, detection 
and labeling BCSCs are difficult. But they are still study 
focuses in BC field at present.

The isolation is foundation and key of BCSCs investiga-
tion. At present, the approaches of BCSCs isolation include 
surface marker sorting, aldehyde dehydrogenase activity 
assay, flow cytometry sorting side population, etc. [8–15]. 
Almost all of the described methods are based on optical 
change before and after substrates interacting with anti-
bodies. Then BCSCs are isolated by flow cytometry. These 
methods are able to rapidly isolate, purify BCSCs. They 
push forward the advancement of BCSCs research, and 
enrich understanding of BCSCs for scientists [16, 17]. How-
ever, the former approaches are mainly well applied in cell 
line level; and they have difficulties to track BCSCs in solid 
tumors in vivo. In this side, fluorescence quantum dot (QD) 
probes have intrinsic advantages in detecting cancer cells.

Fluorescent quantum dot probes staining BC 
and other cells
The QD probes based on semiconductor quantum 
dots have obvious advantages. They have broad excita-
tion band, narrow and symmetrical fluorescence peak, 

tunable fluorescence wavelength with adjusting diam-
eter and components of nanoparticles and strong anti-
photobleaching capability, comparing with traditional 
organic dyes. The fluorescence intensity and stability 
of single QDs are 20 and 100–200 times higher than 
that of single organic fluorescence molecule, in respec-
tively [18]. In 1998, Alivisatos and Nie groups published 
papers about QDs applications in biological systems in 
Nature magazine at the same time, which marked era 
arrival of fluorescence QD labeling biological molecules 
[19, 20].

QD probes can specially label biomarkers on tumor cell 
surface and accurately label subtle subcellular structure. 
Moreover, two or more different QDs can be excited by 
sole light source (Fig. 2). Wu et al. linked QDs with immu-
noglobulin G (IgG) and streptavidin to label breast can-
cer marker Her2 on the surface of fixed and live cancer 
cells. The QD probes could specifically label the desired 
targets and were brighter and considerably more photo-
stable than comparable organic dyes. Their study demon-
strated that QD probes could be very effective in cellular 
imaging and offer substantial advantages over organic 
dyes in multiplex target detection [21]. Gao and O`Regan 
et  al. conjugated Her2, ER, PR, mTOR and EGFR with 
QDs to obtain nanoprobes. Their QD probes could not 
only detect tumor biomarkers in both cultured human 
BC cells and on single paraffin embedded clinical tissue 
sections, but also quantify ER, PR and Her2 receptors. 
Their study suggested that QD probes were well suited 
for molecular profiling of tumor biomarkers in vitro [22]. 
Pang and Li et  al. even used QDs immunofluorescence 
technology to quantify HER2 expression in BC [23]. Liu 
and co-workers used QD probes to explore basic scien-
tific problem, BC invasion. They obtained exciting results 
[24]. Many groups, including our research team, have 
carried out relevant studies and the results were interest-
ing [25–31] (Fig. 3).

QDs have excellent optical properties, therefore, they 
have great potential to be applied in tumor imaging field 
as fluorescence probes in vivo. Gao and co-workers suc-
cessfully attempted. They encapsulated luminescent QDs 
with ABC triblock copolymer and linked this amphiphi-
lic polymer to tumor-targeting ligands and drug-delivery 
functionalities. In vivo targeting studies of human pros-
tate cancer demonstrate that QD probes could accumu-
late at tumor sites through passive and active targeting 
effects. The QD probes displayed sensitive and multicolor 
fluorescence imaging of cancer cells under in vivo condi-
tions (Fig. 4) [32]. Their study and results of other groups 
demonstrated that QD probes could probably be used for 
ultrasensitive and multiplexed imaging of molecular tar-
gets in vivo [33, 34]. Although QD probes have their own 

Fig. 1 Most cancer cells have only limited proliferative potential, only 
CSCs (yellow) have the ability to proliferate extensively and form new 
tumors [5] [Adapted by permission from Macmillan Publishers Ltd: 
[Nature] (Ref.5), copyright (2001)]
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advantages, it also has some unavoidable disadvantages 
in vivo detection cells with low amount of quantity. The 
wavelength of emission photon of QD is in visible range, 
which is also emission band of tissue autofluorescence. 
Moreover, the fluorescence of QD has low spatial resolu-
tion in organ analysis. These drawbacks can effectively be 
compensated by the magnetic resonance imaging (MRI).

MRI labeling BC and other cells
MRI has rapidly developed and widely used in biology 
and medicine field since it was firstly applied in human 
disease diagnosis in 1973 [35]. MRI is based on magnetic 
resonance signal change of water nuclei of hydrogen 
atoms under the interaction of an external magnetic field 
[36]. MRI has its own advantages in tumor detection at 
early stage in vivo.

The contrast agent is an important part of MRI tech-
nology, and it is estimated that more than 35  % clinical 
MRI diagnosis must use contrast agent [37]. At present, 
gadopentetatedimeglumine (DTPA-Gd) is most com-
monly used in clinic. Although the proton T1 relaxa-
tion time decreases and the clarity of MRI improves 
after DTPA-Gd intravenous injection, the contrast agent 
belongs to small molecular compound and its price is 
relatively expensive. Moreover, the contrast agent does 
not have tissue or organ targeting effect, and its retention 
time is short. These disadvantages limit its further appli-
cations in clinical practice [38].

With nanotechnology development, scientists began to 
explore application possibility of magnetic nanomaterials 

Fig. 2 Emission colors of QDs excited by UV

Fig. 3 QD-based double-color in situ fluorescent imaging for Ki67 andHER2 in BC. QD-based double-color images for Ki67 andHER2, Ki67was 
expressed as clear red fluorescence, HER2 as bright green fluorescence (a); the spectral images of Ki67 and HER2 co-expressions were obtained by 
CRi Nuance multispectral imaging system, which could unmix the images into single color images (b); the single red fluorescent image representing 
Ki67 at the emitting wavelength of 655 nm (c); and the single green fluorescent representing HER2 at the emitting wavelength of 525 nm (d). 200× , 
scale bar = 50 μm [28]
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as imaging contrast agent in MRI [39]. Up to now, most 
studies focus on superparamagnetic iron oxide (SPION). 
The core crystal structure of SPION is Fe2O3, Fe3O4 or 
their composite. The SPION surface is modified with 
some functional molecules, such as dextran, citrate or 
polyethylene glycol, in order to improve stability and bio-
compatibility of contrast agent [40–42]. SPION has mag-
netic property. While the size of SPION particles reaches 
nanometer level, the single magnetic domain can be 
formed. Therefore, the iron oxide nanoparticles appear 
superparamagnetic property [43]. Then SPION nano-
particles can further conjugate with biofunctional mol-
ecules to fabricate targeting nanoprobes, which are able 
to detect BC cells and other cells. Salouti and Shayesteh 
et al. prepared SPION coated with dextran and bombesin 
to produce a targeting contrast agent (DSPION-BBN) for 
detection of BC using MRI. They found that DSPION-
BBN possessed good diagnostic capability as a contrast 
agent, with appropriate signal reduction in T2

*-weighted 
color map MR imaging in mice with BC [44]. On SPION 
surface, other functional molecules can also be conju-
gated; furthermore, SPION bioconjugates possess more 
functions. Zheng and Wang et  al. prepared superpara-
magnetic poly(lactic-co-glycolic acid) (PLGA) microcap-
sules (Fe3O4/PLGA) for the application in ultrasound/
MRI dual-modality biological imaging of BCs in vitro and 
in vivo. Their results showed that the bioconjugates had 
good ultrasound imaging and MRI imaging capability 

and provided an alternative strategy for highly efficient 
imaging guided non-invasive BC therapy [45]. Other 
research groups also obtained similar good results [46–
48] (Fig. 5).

SPION has good properties for MR imaging, but it 
also has some intrinsic drawbacks. In MR imaging, the 
SPION shortens the T2 time, and makes the T2 weighted 
image darker, thus enhances the contrast. There-
fore, MRI signal is weak when few of CSCs in tissue is 
detected. In addition, a study has demonstrated that 
the amount of iron oxide consumed by the cells was 10 
times over the amount of endogenous iron in detection 
process. This could directly induce some toxicities and 
side effects to the cells [49]. Moreover, the endosomes 
containing particles of iron oxide were particularly sen-
sitive to external magnetic field. The endosomes could 
be arranged along the outer magnetic field and the bead 
string structure could be formed in the intracellular [50]. 
All of these drawbacks influence the quality of MR imag-
ing CSCs.

According to the former analysis, nanomaterials with 
single imaging modality, whatever is FI or MRI modal-
ity, cannot sensitively and accurately label and track few 
CSCs in solid tumors because of their natural advantages 
and disadvantages (Table  1). But once the nanoprobes 
combined with FI and MRI modality, namely FI-MRI 
dual-modality, are possibly to label and track CSCs in 
in vivo.

Fig. 4 a In vivo simultaneous imaging of multicolor QD-encoded microbeads injected into a live mouse (b) Molecular targeting and in vivo imag-
ing of a prostate tumor in mouse using a QD–antibody conjugate (red) [32]
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FI‑MRI dual‑modality nanoprobes indentifying BC 
and other cells
Up to now, the nanoprobe studies about FI-MRI dual 
modality for labeling cells have achieved advancement 
worldwide. Most of the studies were based on nanosized 
iron oxide to fabricate dual-modality nanoprobes. Shi 
and Yang group prepared monodisperse silica-coated 

manganese oxide nanoparticle (NPs) covalently conju-
gated with Rhodamine B isothiocyanate (RBITC) and 
folate (FA) on surface. The prepared nanoprobes could 
specifically target cancer cells overexpressed FA recep-
tors. And the probes were excellent platform for both 
MRI and FI in various biological systems at the same 
time [51]. Lee et  al. constructed dual-modality nano-
probes based on a Fe3O4-encapsulated block copoly-
mer conjugating with fluorescent dye Sulforhodamine 
101. The nanoprobes could be internalized into BC 
cells, which were probably used in biomedical diagnosis 
fields [52]. While Xu and co-workers fabricated an FI-
MRI dual-modality imaging nanoprobe based on gado-
linium oxide and aptamer-Ag nanoclusters. Using this 
nanoprobe, MCF-7 BC cells could be effectively tracked 
by FI and MRI in vitro [53]. Kobayashi et al. used small 
particle of iron oxide (SPIO) and quantum dot (QD) to 
dual-label human BC, and tracked BC in the lymphatic 
system in mice in vivo MRI and FI imaging. Their study 
demonstrated that nanoprobes with MRI and FI dual-
modality was possible to depict marco and early micro-
metastase with the lymphatic system [54]. Zhang et  al. 
prepared SPION coated with copolymer of chitosan and 

Fig. 5 1.5-T MRI turbo-spin-echo-T2-weighted (5500/100) dynamic imaging of human MDA- MB-231 breast cancer xenografts. a–f Injection of 
γ-Fe2O3@DMSA NPs showed that the tumor (thick white arrows) signal intensity decreased at 12 h which returned to basal levels by 24 h. g–l Injec-
tion of γ-Fe2O3@DMSA-DG NPs showed that the tumor signal intensity decreased between 12 and 48 h, with the most hypointensity observed at 
24 h. The signal intensity in the liver (thin white arrows) significantly decreased after injection of γ-Fe2O3@DMSA NPs or γ-Fe2O3@DMSA-DG NPs [48]

Table 1 Advantages and  drawbacks of  fluorescence and   
magnetic resonance imaging

Fluorescence Magnetic resonance 
imaging

Spatial resolution Low High

Sensitivity High Low

Specificity Weak T1 imaging is better for 
anatomic structure;

T2 imaging is better for 
tissue lesions

Penetration depth Shallow Deep

Acquisition time From a few seconds to a 
few minutes

From several minutes to a 
few hours

Traumatic Noninvasion Noninvasion
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polyethylene glycol (PEG), labeled with fluorescent dye 
and conjugated with monoclonal antibody against the 
neu receptor (NP-neu). The bioconjugates could accu-
rately label breast tumors with MRI and optical dual-
modality [55].

Halas and his assistants constructed nanoshells (NS) 
by coating a gold shell with a silica epilayer doped with 
Fe3O4 and the fluorophore indocyanine green (ICG). The 
NS enhanced the fluorescence of ICG through efficiently 
integrating nanoparticles Fe3O4 into the requisite spacer 

layer between the metallic shell layer and the ICG fluo-
rophore. The nanocomplexes could well target and image 
SKBR3 cells [56]. Hyeon and his co-workers synthesized 
nanoparticles by decorating the surface of mesoporous 
dye-doped silica nanoparticles with Fe3O4 nanocrystals 
loading doxorubicin (DOX). The nanocomplexes could 
passively target and accumulate at the tumor sites by 
both T2 MRI and FI. The versatile nanoplatform was a 
good imaging and drug delivery system for cancer detec-
tion and therapy (Fig. 6) [57]. Shin and Cheon fabricated 

Fig. 6 In vitro multimodal imaging with nanoprobes. (a) Fluorescence image of cell pellets and (b) MR (upper) and its color mapped (lower) images 
of dispersed cells in agarose. (c) Confocal laser scanning microscopic images [57]. Reprinted with permission from (J Am Chem Soc. 2010; 132: 
552–557). Copyright (2010) American Chemical Society
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core-satellite nanoparticles through conjugation of Rho-
damine-dye-doped silica (DySiO2) nanoparticles with 
water-soluble magnetism engineered iron oxide (MEIO) 
nanoparticles and HmenB1 antibodies by using proper 
cross-linkers. The prepared nanoparticles had excellent 
dual-modal imaging properties for detection of polysialic 
acids expressed on various cell lines [58]. Other sev-
eral research groups used dual-modality nanoprobes to 
detect or analyze cells, the results were very exciting [59–
66]. These results indicate that nanoparticles with MRI 
and FI dual-modality are able to label and track targeting 
cells in tissue or solid tumors.

In detection of stem cells study using dual-modal 
nanoprobes, several groups have already made progress. 
Shen et  al. constructed nanometer-sized cationic poly-
mersomes loaded with supermagnetic iron oxide nano-
particles and quantum dots. The synthesized cationic 
polymersomes could act as an effective and safety car-
rier to transfer image labels into neural stem cells. The 
monitored cells could be detected up to 6 weeks by MRI 
and up to 4  weeks by FI [67]. Liu group prepared mul-
tifunctional nanoprobes (MFNPs) using upconversion 
nanoparticles as core, a layer of ultrafine iron oxide nano-
particles as intermediate layer and a gold layer as outer 
layer. The prepared MFNPs could accurately label mouse 
mesenchymal stem cells (mMSCs), but they did not 
influence viability and differentiation ability of mMSCs. 
In  vivo experiments, the nanoprobe exhibited ultrahigh 

sensitivity. Using upconversion and MRI approaches, 
MFNP-labeled mMSCs could be well tracked under a 
magnetic field (Fig. 7) [68].

In mesenchymal stem cell detection, Sung and his 
co-workers prepared magnetic nanoparticles (MNPs) 
coated with a silica shell, and then rhodamine B siothi-
ocyanate (RITC) was incorporated into the silica shell. 
Thus, the MNP@SiO2(RITC) had a bifunctional prop-
erty which enables dual modality detection by MRI and 
optical imaging. The nanoparticles were further modi-
fied with PEG groups in order to improve their biocom-
patibility. The fabricated nanoparticles could accurately 
label human mesenchymal stem cells (hMSCs) in  vitro 
and in vivo with optical and MRI (Fig. 8) [69]. Park et al. 
used MRI/FI nanoparticles as transfection agent for gene 
delivery and cell tracking of hMSCs. The nanoagent did 
not only display high transfection efficiency in hMSCs, 
but also exhibit good MRI and FI capability over 14 days 
[70]. Other research groups used similar bifunctional 
nanoparticles to label MSCs and similar results were 
obtained [71–76].

Although these studies are very exciting, but some 
drawbacks existing in present probes should be per-
ceived. Firstly, optical stability of organic dyes is rela-
tively weak, which can decrease the optical stability of 
nanoprobes; secondly, the diameter of dual-modality 
nanoprobes synthesized by polymer composites is rela-
tively larger. This influences penetration capability of 

Fig. 7 Upconversion fluorescence images of a mouse injected with multifunctional nanoparticles-labeled mMSCs taken right after injection (a) and 
6 h after injection (b) in the presence of a magnetic field. (c) In vivo MR image of the same mouse in (b) [68]
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nanoprobes among tissue cells and limits nanomateri-
als further application. In addition, multi-layer assem-
bled nanoprobe has complex structures and is relatively 
expensive, which is difficult to apply in clinical practice. 
However, once these drawbacks are overcome, dual-
modality or multi-modality nanoprobes will be rapidly 
applied in detection and therapy fields of BCSCs and 
other cancer stem cells.

Application prospective of nanoprobes with MRI‑FI 
dual‑modality on detecting BCSCs
MRI-FI Dual-modality nanoprobes are integration of 
two different imaging probes with single modality. These 
nanoprobes can be detected under FI and MRI modal-
ity at the same time. The nanoprobes with FI-MRI 
dual-modality do not only overcome drawbacks of single-
modality probes, but also compensate multi-drawbacks. 
The dual-modality nanoprobes can accurately label and 
track CSCs, and can display the spatial distribution of 
BCSCs in solid BC tumors. These can afford strong clini-
cal foundation for further studying diagnosis, treatment 
and recurrence of BC at early stage.
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