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Diagnostic evaluation of a deep learning model for
optical diagnosis of colorectal cancer
Dejun Zhou1,16, Fei Tian2,16, Xiangdong Tian1,16, Lin Sun3,16, Xianghui Huang4, Feng Zhao5, Nan Zhou5,

Zuoyu Chen6, Qiang Zhang7, Meng Yang8, Yichen Yang8, Xuexi Guo9, Zhibin Li10, Jia Liu2, Jiefu Wang2,

Junfeng Wang2, Bangmao Wang11, Guoliang Zhang12, Baocun Sun3, Wei Zhang13,14, Dalu Kong2,

Kexin Chen 15✉ & Xiangchun Li 8✉

Colonoscopy is commonly used to screen for colorectal cancer (CRC). We develop a deep

learning model called CRCNet for optical diagnosis of CRC by training on 464,105 images

from 12,179 patients and test its performance on 2263 patients from three independent

datasets. At the patient-level, CRCNet achieves an area under the precision-recall curve

(AUPRC) of 0.882 (95% CI: 0.828–0.931), 0.874 (0.820–0.926) and 0.867 (0.795–0.923).

CRCNet exceeds average endoscopists performance on recall rate across two test sets

(91.3% versus 83.8%; two-sided t-test, p < 0.001 and 96.5% versus 90.3%; p= 0.006) and

precision for one test set (93.7% versus 83.8%; p= 0.02), while obtains comparable recall

rate on one test set and precision on the other two. At the image-level, CRCNet achieves an

AUPRC of 0.990 (0.987–0.993), 0.991 (0.987–0.995), and 0.997 (0.995–0.999). Our study

warrants further investigation of CRCNet by prospective clinical trials.
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Colorectal cancer (CRC) ranks the second leading cause of
cancer-related death and the third most common cancer
types worldwide1. Colonoscopy is the most frequently

used tool to screen for CRC2,3, offering direct biopsy of intestinal
tumor masses for pathological diagnosis. The advantage of
colonoscopic screening is its ability to detect precancerous lesions
and CRC at early stage, during which surgical removal is often
curative. Colonoscopic screening has contributed to reduced
mortality of CRC in observational studies, where ~80% of CRC
can be prevented by polypectomy4,5. Comparative studies have
shown that prompt treatment of severe atypical hyperplasia or
CRC at early stage prolonged overall survival6–8. In addition,
incomplete biopsy often leads to misdiagnosis of early CRC as
mild or moderate dysplasia, subsequently leading to inappropri-
ate treatment9–11. Therefore, accurate differentiation between
malignant and benign lesions under colonoscopy is medically
important to select optimal treatment regimen, avoid inap-
propriate endoscopic resection, and improve cost-effectiveness. A
key aspect of endoscopists is the differential diagnosis of colo-
noscopic lesions, according to NBI International Colorectal
Endoscopic (NICE)12 and Workgroup serrated polyps and
polyposis (WASP)13 classification systems. The NICE criterion is
built upon features such as staining, vascular and surface patterns
that were derived from narrow-band imaging (NBI). The WASP
classification system can perform optical diagnosis of hyperplastic
polyps, adenomas, and sessile serrated adenomas/polyps. How-
ever, to our knowledge, these two criteria cannot be used to
perform optical diagnosis of benignity and malignancy for colo-
noscopic lesions using white-light imaging modality.

The 5-year overall survival rate of patients in USA diagnosed
with CRC ranges considerably from 90.1 for patients at stages I
and II, 69.2 for patients at stage III to 11.7% for patients at stage
IV14. In this point of view, an artificial intelligence model that can
identify CRC patients at early stage would be useful for earlier
intervention.

Deep learning models have seen wide application in medical
imaging data interpretation since AlexNet won 2012 ImageNet
competition15. Recently, we reported that a deep learning model
achieved similar sensitivity, and improved specificity and accu-
racy in detecting patients with thyroid cancer as skilled radi-
ologists16. Deep learning models have also been demonstrated to
improve endoscopists’ performance in the detection of polyp or
adenoma17,18 and upper gastrointestinal cancer19. Ahmad et al.
provided a thorough review on studies related to application of
artificial intelligence in computer-aided diagnosis in colono-
scopy20. Chen et al. used a small number of 2157 images obtained
from NBI to develop deep learning model to perform optical
diagnosis of diminutive hyperplastic and neoplastic polyps
without independent test set17.

Until recently, there is still lack of study using deep learning to
analyze large-scale colonoscopic images to perform optical diag-
nosis of CRC. Such a deep learning model could aid endoscopists
to distinguish malignancy and benignity of colorectal lesions,
which can improve the efficiency of colonoscopy. Herein, we
develop a deep learning model termed CRCNet by training on by
far the largest number of colonoscopic images (n= 464,105) from
12,179 patients obtained from Tianjin Cancer Hospital (TCH)
and validate its performance on 2263 patients from an internal
and two external test sets. We use pathological examination as
gold standard to train and evaluate CRCNet. The performance of
CRCNet is assessed and compared against five endoscopists at
both patient level and image level. In addition, we employ weakly
supervised algorithm to pinpoint neoplastic lesions on the image,
which could provide visual explanation for decision made by
CRCNet to justify its prediction. The purpose of this study is to
investigate the performance of CRCNet for optical diagnosis of

CRC. We train CRCNet with large volume of colonscopic ima-
ging data and systematically evaluate its performance on three
independent test sets. We show that CRCNet achieves endosco-
pist level in optical diagnosis of CRC across these three test sets.

Results
Baseline characteristics of training and test datasets. We
obtained 464,105 images from 12,179 patients between August
2011 and March 2019 at TCH as training set. We subsequently
assembled three test sets that consisted of 20,783 images from 363
patients between April 2019 and May 2019 at TCH, 15,441
images from 430 patients between January 2018 and February
2019 at Tianjin First Central Hospital (TFCH), and 48,391 images
from 1470 patients between January 2018 and December 2018 at
Tianjin General Hospital (TGH), respectively. All CRC patients
(n= 3176) and 56.1% (5050/9003) of control patients in training
set and all patients in three test sets have pathological examina-
tion results. The training set consisted of 3176 CRC patients and
9003 controls. Male sex accounted for 62.5% (1985/3176) in CRC
patient group versus 54.5% (4909/9003) in the control group.
Ages were 60 (53–67) in the CRC patient group versus 57 (49–64)
for the control group. For CRC patients, tumors from different
sites were included: ascending colon (19.9%, n= 631), transverse
colon (4.5%, n= 143), descending colon (5.6%, n= 178), sigmoid
colon (17.7%, n= 561), and rectum (52.4%, n= 1663). There
were 11.4% of CRC patients at stage I, 44.3% at stage II, 7.3% at
stage III, and 2% at stage IV; whereas 35.7% patients had no
TNM stage information because they did not receive surgical
resection but only colonoscopy-guided biopsy (Table 1). Besides
normal mucosa, multiple benign diseases were encompassed in
the control group, including adenoma, hyperplastic polyps, sessile
serrated adenomas/polyps, inflammatory bowel disease, and
chronic mucosal inflammation (Supplementary Table 1). There
were 146 CRC patients and 217 controls in TCH test set (n=
363), 90 CRC patients and 340 controls in TFCH test set (n=
430), and 71 CRC patients and 1399 controls in TGH test set
(n= 1470). The additional detailed number of patients with
regards to sex, age, tumor site, TNM stage, and a flowchart
depicting these processes were provided in Table 1 and Fig. 1,
respectively.

Performance of CRCNet on three independent test sets. We
trained CRCNet iteratively and evaluated the performance of the
best model on three test sets (see “Methods”). Malignancy score
for each patient was calculated according to Eq. (1). We found
that CRCNet achieved high performance in identifying CRC
patients: for the TCH test set, area under the PR curve (AUPRC)
was 0.882 (95% CI: 0.828–0.931), accuracy was 87.3%
(83.5–90.6%), recall rate was 90.4% (0.844–0.947), specificity was
85.3% (79.8–89.7%), and F1 was 85.2%; for TFCH test set,
AUPRC was 0.874 (0.820–0.926), accuracy was 91.6%
(88.6–94.1%), recall rate was 78.9% (69.0–86.8%), specificity was
95.0% (92.1–97.1%), and F1 was 79.8%; and for TGH test set,
AUPRC was 0.867 (0.795–0.923), accuracy was 98.0%
(97.2–98.7%), recall rate was 74.6% (62.9–84.2%), specificity was
99.2% (98.6–99.6%), and F1 was 78.5% (Table 2 and Supple-
mentary Fig. 1). The area under the receiver-operating char-
acteristic (AUROC) curve was 0.930 (0.903–0.956) for TCH,
0.961 (0.943–0.979) for TFCH, and 0.989 (0.980–0.997) for TGH
test sets (Supplementary Fig. 2). The other classification metrics
such as precision, negative predictive value and kappa coefficient
were provided in Table 2.

Notably, the predicted malignancy scores of CRC patients at
early stage (I and II) and advanced stage (III and IV) are
comparable (mean 0.679 versus 0.689; two-sided t-test, p= 0.843;
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Supplementary Fig. 3). For 36 false negative cases in three test
sets, 2 of them who had received radiotherapy or chemotherapy
exhibited complete response; 4 of them underwent endoscopic
submucosal dissection and en bloc removal. Colonic lesions were
not discernible on the colonoscopic images from these patients.
The other two false negatives were due to the absence of lesions
on the clipped images. Among the remaining 30 cases, 10 of them
had constrictive lesion, necrotic ooze attached to the surface,
intussusception, or severe colon melanosis, which led to poor
exposure of the lesion; ulcer in eight cases led to the absence of
lesions on the clipped images. Preoperative management such as
marking with metal titanic clips, submucosal injection of
nanocarbon and biopsy contributed to false negative prediction
in the other six cases. The rest six cases are putative false
negatives made by the model. The gradient-weighted class
activation mapping (Grad-CAM) images of these 36 cases were
provided as Supplementary Data 1.

With respect to optical diagnosis of CRC by left-sided
(descending and sigmoid colon), right (ascending and transverse
colon), and rectal locations, the AUPRC values of CRCNet were
0.729 (0.601–0.866), 0.622 (0.483–0.79), and 0.788 (0.699–0.874)
for TCH test set, 0.743 (0.609–0.866), 0.734 (0.588–0.859), and
0.748 (0.594–0.887) for TFCH test set, and 0.572 (0.401–0.815),
0.691 (0.514–0.858), and 0.728 (0.558–0.942) for TGH test set.
The precision–recall (PR) curves were provided in Supplementary
Fig. 4. The AUROC values were ranged from 0.927 to 0.939 for
TCH test set, 0.949 to 0.975 for TFCH test set, and 0.978 to 0.996
for TGH test set. The receiver-operating characteristic (ROC)
curves were provided in Supplementary Fig. 5.

Performance of CRCNet versus five endoscopists. All CRC
patients and a random subset of 200 controls from TFCH and
TGH test sets, and all patients from TCH test set were used to
evaluate the performance of CRCNet versus a group of five skilled
endoscopists. The total number of images read and interpreted by
each endoscopist were 38,788. CRCNet achieved an AUPRC of

0.882 (95% CI 0.828–0.931) for TCH test set, 0.920 (95% CI
0.874–0.955) for TFCH test set, and 0.969 (95% CI 0.937–0.992)
for TGH test set (Fig. 2). As compared with endoscopists,
CRCNet achieved an F1 metric of 0.852, 0.857, and 0.928 versus
0.768, 0.878, and 0.873 on these three subsets from test sets. The
other classification metrics such as accuracy, recall rate, specifi-
city, precision, negative predictive value, and kappa coefficient
were provided in Table 3. Detailed classification metrics for each
endoscopists were provided in Supplementary Table 2. The inter-
rater agreement rate for this group of five experienced endosco-
pists was 56.7% (206/363, Fleiss’ Kappa 0.58; two-sided z-test, p <
0.001) in TCH test set, 76.6% (222/290, Fleiss’ Kappa 0.75; two-
sided z-test, p < 0.001) in TFCH test set, and 88.2% (239/271,
Fleiss’ Kappa 0.87; two-sided z-test, p < 0.001) in TGH test set.
The average precision and recall rate of this group of five
endoscopists were situated below PR curves in TCH and TGH
test sets (Fig. 2a, c), while it was marginally situated above PR
curve in TFCH test set (Fig. 2b). At the average precision level of
this group of five endoscopists, CRCNet obtained higher recall
rate in TCH (91.3% versus 83.8%; two-sided binomial test, p <
0.001) and TGH (96.5% versus 90.3%; two-sided binomial test,
p= 0.006) test sets, and comparable recall rate in TFCH (82.9%
versus 87.6%; two-sided binomial test, p= 0.29) test set. Whereas
at the average recall rate level of this group of five endoscopists,
CRCNet obtained higher precision in TGH (93.7% versus 83.8%;
two-sided binomial test, p= 0.02) test set, and comparable pre-
cision in TCH (81.3% versus 77.9%; two-sided binomial test, p=
0.32) and TFCH (81.1% versus 83.4%; two-sided binomial test,
p= 0.52) test sets.

Performance of CRCNet at image level. We also measured the
classification performance of CRCNet at the image level on
images of CRC patients from three test sets (see “Methods”).
CRCNet achieved high performance in detecting consensus
malignant images (Fig. 3): for the TCH test set, AUPRC was 0.990
(95% CI 0.987–0.993) and F1 was 95.6%; for TFCH test set,

Table 1 Baseline characteristics of training set and three test sets.

TCH training set TCH test set TFCH test set TGH test set

CRC Non-CRC CRC Non-CRC CRC Non-CRC CRC Non-CRC

Patients 3176 9003 146 217 90 340 71 1399
Images 28,071 436,034 7485 13,298 2576 12,865 1614 46,777
Male sex 1985 4909 86 132 59 220 35 780
Images 17,697 245,936 4599 8151 1618 8351 760 26,510
Female sex 1191 4094 60 85 31 120 36 619
Images 10,734 190,071 2886 5147 958 4514 854 20,267
Age (years) 60 (53–67) 57 (49–64) 61 (53–66) 59 (52–66) 63 (53.3–72) 58.5 (50–65) 66 (59–74) 58 (47.5–65)
Age≤ 60 years male 1037 (32.7%) 3004 (33.4%) 42 (28.8%) 71 (32.7%) 20 (22.2%) 138 (40.6%) 9 (25.7%) 481 (61.7%)
Age > 60 years male 948 (29.8%) 1905 (21.2%) 44 (30.1%) 61 (28.1%) 39 (43.3%) 82 (24.1%) 26 (74.3%) 299 (38.3%)
Age≤ 60 years female 604 (19%) 2672 (29.7%) 28 (19.2%) 53 (24.4%) 15 (16.7%) 52 (15.3%) 11 (30.6%) 342 (55.3%)
Age > 60 years female 587 (18.5%) 1422 (15.8%) 32 (21.9%) 32 (14.7%) 16 (17.8%) 68 (20%) 25 (69.4%) 277 (44.7%)
Tumor sitea

Ascending colon 631 (19.9%) 15 (10.3%) 20 (22.2%) 19 (26.8%)
Transverse colon 143 (4.5%) 17 (11.6%) 8 (8.9%) 9 (12.7%)
Descending colon 178 (5.6%) 11 (7.5%) 0 7 (9.9%)
Sigmoid colon 561 (17.7%) 36 (24.7%) 29 (32.2%) 19 (26.8%)
Rectum 1663 (52.4%) 67 (45.9%) 33 (36.7%) 17 (23.9%)

TNM staginga

I 362 (11.4%) 15 (10.3%) 9 (10.0%) 5 (7%)
II 1407 (44.3%) 24 (16.4%) 9 (10.0%) 15 (21.1%)
III 231 (7.3%) 34 (23.3%) 12 (13.3%) 9 (12.7%)
IV 62 (2%) 3 (2.1%) 1 (1.1%) 1 (1.4%)

Biopsy pathology 1114 (35.7%) 70 (47.9%) 59 (65.6%) 41 (57.7%)

aTumor site and TNM staging were reported for CRC patients only.
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Colonoscopic imaging data collected from Tianjin Cancer 

Hospital between August 2011 and March 2019
12,179 individuals, 464,105 images

Non-CRC disease
5050 individuals

Doctors directed control

3953 individuals
CRC

3176 individuals

Control

9003 individuals
436,034 images

Training set
12,179 individuals
464,105 images

CRCNet

classification model

Iterative training

T
ra

in
in

g 
se

t a
nd

 m
od

el
 d

ev
el

op
m

en
t

V
al

id
at

io
n 

se
ts

Aim: CRC vs. Non-CRC

classification

Surgery or biopsy (decided by doctors)
Yes

No

TCH: 146 CRC,

217 Non-CRC, 
20,783 images

TFCH: 90 CRC,
340 Non-CRC, 
15,441 images
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2263 patients (84,615 images) were analyzed for accuracy, 
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10,092 images
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Separated by endoscopists
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Fig. 1 Flowchart depicting the development and evaluation of CRCNet. a Model development consisted data curation and CRCNet training. b Evaluation
of CRCNet on three test sets. c Comparison between CRCNet and five endoscopists on a subset of randomly selected cases. All CRC patients and 5050
control patients in the training set and all patients in three test sets have surgical specimen or biopsy for pathological evaluation.

Table 2 Classification metrics of CRCNet at the patient level.

The performance of CRCNet across three test sets

Performance metrics Tianjin Cancer Hospital (n= 363) Tianjin First Central Hospital
(n= 430)

Tianjin General Hospital
(n= 1470)

Accuracy (95% CI) 0.873 (0.835–0.906) 0.916 (0.886–0.941) 0.980 (0.972–0.987)
Recall rate (95% CI) 0.904 (0.844–0.947) 0.789 (0.690–0.868) 0.746 (0.629–0.842)
Specificity (95% CI) 0.853 (0.798–0.897) 0.950 (0.921–0.971) 0.992 (0.986–0.996)
Precision (95% CI) 0.805 (0.736–0.863) 0.807 (0.709–0.883) 0.828 (0.713–0.911)
Negative predicted value
(95% CI)

0.930 (0.885–0.961) 0.944 (0.915–0.966) 0.987 (0.980–0.992)

Kappaa 0.742 0.745 0.775
F1b 0.852 0.798 0.785

aMeasures the agreement between predicted classification with pathological report.
bHarmonic average of the precision and recall rate.
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AUPRC was 0.991 (95% CI 0.987–0.995) and F1 was 96.3%; and
for TGH, AUPRC was 0.997 (95% CI 0.995–0.999) and F1 was
97.3%. The other classification metrics such as accuracy, recall
rate, specificity, precision, negative predictive value, and kappa
coefficient were provided in Supplementary Table 3.

Visual explanation of decision made by CRCNet. We used
Grad-CAM algorithm21 to identify image regions contributed the
most to the prediction made by CRCNet. Representative exam-
ples of malignant colonoscopic images with accompanying sal-
iency heatmaps highlighting features most influenced CRCNet
prediction was shown in Fig. 4 and Supplementary Data 2. The
Grad-CAM heatmaps of flat and sessile serrated polyps were
provided as Supplementary Data 3 and 4. In addition, we asked
five endoscopists to inspect 255 randomly selected colonoscopic
images and their accompanying saliency heatmaps. The full list of
these 255 images were provided in Supplementary Data 5. The
percentage of these 255 saliency heatmaps for which these five
endoscopists agreed that the heatmaps captured the regions of
malignant lesions was 94.3% (95% CI: 91.4–97.1%). The accuracy

assessed by each endoscopist was shown in Supplementary
Table 4.

Discussion
Results from this study showed that CRCNet model achieved
high precision and recall rates in identifying CRC patients as
compared with a group of five skilled endoscopists. CRCNet
achieved consistent and robust performance across three test sets
with significant improvement in precision on two test sets and
recall rate on one test set. At the image level, CRCNet performed
satisfactorily in distinguishing between malignancy and benignity
of colonic lesions. In addition, endoscopists found the evidence-
based visual explanation derived from CRCNet useful for routine
clinical practice.

Improvement in medical imaging technique and endoscopic
classification system such as WASP have facilitated the optical
diagnosis of benign lesions, however, optical diagnosis of malig-
nant lesions is also an important clinical application and remains
challenging. For example, invasive tumor often needs surgical
treatment, whereas precancerous disease such as adenoma
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Fig. 2 Performance of CRCNet versus endoscopists in identifying CRC. Precision–recall curves of CRCNet on a TCH test set, b TFCH test set, and c TGH
test sets. Area under the precision–recall curve and associated 95% confidence intervals are included. Blue stars depict precision and recall rate of each
individual endoscopist and green stars are average performance of these five endoscopists.

Table 3 Classification metrics of endoscopists versus CRCNet.

The performance of endoscopists and CRCNet

Tianjin Cancer Hospital (n= 363) Tianjin First Central Hospital (n= 290) Tianjin General Hospital (n= 271)

Performance
metrics

Endoscopista CRCNet Endoscopista CRCNet Endoscopista CRCNet

Accuracy (95% CI) 0.824
(0.781–0.861)

0.873
(0.835–0.906)

0.928
(0.891–0.955)

0.903
(0.863–0.935)

0.934
(0.897–0.960)

0.963
(0.933–0.982)

Recall rate (95% CI) 0.849
(0.781–0.903)

0.904
(0.844–0.947)

0.867
(0.779–0.929)

0.933
(0.861–0.975)

0.900
(0.805–0.959)

0.914
(0.823–0.968)

Specificity (95% CI) 0.912
(0.867–0.946)

0.853
(0.798–0.897)

0.920
(0.873–0.954)

0.890
(0.838–0.930)

0.940
(0.898–0.969)

0.980
(0.950–0.995)

Precision (95% CI) 0.842
(0.764–0.902)

0.805
(0.736–0.863)

0.838
(0.751–0.905)

0.792
(0.703–0.865)

0.844
(0.744–0.917)

0.941
(0.856–0.984)

Negative predicted
value (95% CI)

0.880
(0.825–0.924)

0.930
(0.885–0.961)

0.941
(0.899–0.969)

0.967
(0.930–0.988)

0.964
(0.928–0.986)

0.970
(0.937–0.989)

Kappab 0.622 0.742 0.82 0.785 0.828 0.903
F1c 0.768 0.852 0.878 0.857 0.873 0.928

aThe median value of five endoscopists.
bMeasures the agreement between predicted classification with pathological report.
cHarmonic average of the precision and recall rate.
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requires endoscopic submucosal dissection. Therefore, it is
important to devise new ways to aid endoscopists in differ-
entiating benign lesions from malignant ones on white-light
images, which is the most commonly used imaging modality in
routine clinical practice. In addition, white-light imaging mode
can avoid false positive caused by poor intestinal preparation
under NBI to some extent.

In recent studies, deep learning has been widely applied in
endoscopy. Previous studies have developed deep learning models
on images from colonoscopy for detecting polyps or
adenomas17,18,22. Our study was dedicated to optical diagnosis of
CRC instead of lesion detection as conducted by aforementioned
studies. Optical diagnosis of CRC has previously been investi-
gated by Mori et al. by training on image features extracted from
endocytoscopy23, which can provide morphological images of the
nuclei and gland duct lumens that beyond the capability of
colonoscopy. Takemura et al. developed HuPAS software for
predicting histology of colorectal tumors from 1519 cut-out
images from magnifying NBI images24. To the best of our

knowledge, we developed CRCNet for optical diagnosis of CRC
using by far the largest number of colonoscopic images from
standard white-light imaging modality. CRC is initially identified
by endoscopists during colonoscopic examination based on
tumor surface features. It is difficult to accurately recognize all
malignant lesions and there is a low interendoscopists agreement
rate, which was also reflected by the varying agreement rates
among endoscopists in test sets in this study (range from 56.7 to
88.2%). This is likely due to increased difficulty in identifying
noncancerous patients in TCH cohort because patients came to
TCH are often suspected to be cancerous. This was reflected by
higher proportion of CRC patients in test set from TCH (40.2%,
n= 146/363) as compared with those from TFCH (20.9%, n=
90/430) and TGH (4.8%, n= 71/1470). On the contrary, CRCNet
can make consistent interpretation once deployed.

CRCNet has the potential to reduce the reliance on expertise of
colonoscopists for optical diagnosis of CRC and improve diag-
nostic consistency. One advantage of our study was the inclusion
of diverse noncancerous diseases (i.e., polyps, adenomas, chronic
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Fig. 3 Performance of CRCNet in identifying malignant colonoscopic images. Precision–recall curves of CRCNet on a TCH test set, b TFCH test set, and
c TGH test sets. Area under the precision–recall curve and associated 95% confidence intervals are included.
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Fig. 4 Exemplified class activation maps. a Raw colonoscopic images. b Gradient-weighted class activation map. c Guided gradient-weighted class
activation map. d Haematoxylin–eosin staining images with scale bars. The length of scale bar was shown above the bar. e Tumor location and TNM stage.
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mucosal inflammation, and inflammatory bowel disease) in
control group and employment of pathological examination as
gold standard. Therefore, CRCNet could learn noncancerous
features that often complicate CRC diagnosis, presumably
increasing model performance and avoiding verification bias.
Meanwhile, the performance of endoscopists in identifying CRC
depends on their working experience and often varies con-
siderably given that human-derived diagnostic systems are often
established by expert consensus and subjected to human varia-
tion20, whereas CRCNet can provide objective optical diagnosis.

Another advantage of CRCNet is that it can report results
immediately and consistently on the graphics processing unit
thus facilitating real-time CRC detection and decreasing the
workload, inconsistency, and misdiagnosis. In addition, CRCNet
can overcome inherent limitations of endoscopists such as per-
ceptual bias and visual fatigue17. CRCNet showed high degree of
fidelity and uniformity in differentiating malignant lesions from
benign lesions at image level, suggesting that it could serve as a
second-read tool during colonoscopic examination. The prog-
nosis of patients with CRC is closely associated with pathological
stage. The comparable predicted malignancy scores of CRC
patients at early stage (I and II) and advanced stage (III and IV)
(mean 0.679 versus 0.689; two-sided t-test, p= 0.843) suggested
that CRCNet performs equally good in detecting CRC patients at
early stage as those at advanced stage. For false positives with high
prediction malignancy scores and also interpreted as CRC
patients by a group of five endoscopists, it is likely due to
incomplete biopsy during colonoscopy examination. This high-
lighted that CRCNet might complement endoscopists in optical
diagnosis. Additional follow-up evaluation for these patients are
required. Besides, the visual explanation derived from CRCNet
can further provide evidence-based classification to assist
endoscopists in interpreting the images. This can justify the
predictions made by CRCNet, especially when there are unreli-
able predictions. However, the accuracy of CRCNet to pinpoint
small tumors would decrease as Grad-CAM algorithm only per-
forms well when the class being detected covers a big portion of
the image.

Integration of CRCNet into colonoscopy interpretation system
can help endoscopists speed up interpretation process. A second
read from CRCNet could augment the capability of endoscopists
to manage patients at high risk of CRC. Marginal improvement in
CRCNet to discriminate between malignant and benign lesions
could reduce unnecessary biopsy. Using the white-light imaging
modality and not having revert to NBI would be more clinically
relevant and potentially more translational as it relies on images
seen in routine colonoscopy. CRCNet can further expand the
recognition of early colorectal lesions by white light, especially for
community hospitals without NBI equipment. Although CRCNet
was developed with white-light imaging data, it could to some
extent correctly classify sessile polyps as benign, which is con-
sidered to be better recognized on NBI imaging mode. However,
the aforementioned clinical diagnostic validity conferred by
CRCNet requires further investigation in clinical trials.

There are several limitations of this study. Firstly, CRCNet was
trained only on static images from a single medical center, it may
not be able to capture all the real-world data variation in relation
to different devices and skills of endoscopists. In daily clinical
practice, optical diagnosis of colonoscopic lesions are evaluated in
a real-time scenario and image quality would be affected by
operational fluctuation. This will deteriorate the performance of
CRCNet. On the other hand, it might be easier to characterize
colonoscopic lesions in real-time colonoscopy as we are able to
visualize lesions from multiple perspectives, thus potentially
increasing the performance of optical diagnosis13. To overcome
this limitation, we employed extensive data augmentation during

model training, the impact of lacking training data from other
centers could be mitigated and image variations were also
increased. This was demonstrated by comparable, robust, and
generalizable performance of CRCNet on external test sets.
Results from Urban et al. demonstrated that deep learning model
trained on static images could achieve high accuracy in real-time
colonoscopy settings25. Secondly, the current model can only
distinguish between malignancy and benignity. In this study, we
did not include other rare malignant diseases observed by colo-
noscopy such as sarcoma, melanoma, gastrointestinal stromal
tumor, lymphoma, and carcinoid tumor because of their limited
number of cases. Future work will be focused on expanding our
model to further classify whether the detected benign intracavity
lesion is adenoma, hyperplastic polyps, or sessile serrated polyps/
adenomas. Thirdly, the enrolled patients in training set and test
sets were mainly northern Chinese, the performance of CRCNet
on other ethnic groups remains to be tested. Fourthly, the
improvement of clinical outcomes brought by CRCNet remains
to be determined as this is a retrospective study. In addition, we
did not consider other types of data, for example, age, sex, family
history, and tumor site, beyond colonoscopic images.

Although CRCNet could achieve satisfactory performance, it
does not necessarily mean improved clinical outcomes. Class
imbalance is a common challenge in medical area. It is difficult to
obtain positive samples in that these samples were under-
represented in real-world scenario and imaging database. The
ratio of positive samples to negative samples was 6.4% in training
set. We addressed this issue by using focal loss for training. The
focal loss focuses training on hard-classified examples while
prevents the well-classified negative examples from over-
whelmingly affecting the model26.

Future prospective studies should be conducted to compare
clinical efficacy of colonoscopy with or without assistance of
CRCNet. Given the unbalanced medical resource in many
countries including China, such a model may benefit community
hospitals in rural areas. In the future, we intend to associate
pathological findings such as the depth of tumor invasion, vas-
cular thrombus, perineural invasion, lymph node, and distant
metastasis with features of extracted colonoscopic images, in
order to predict the preoperative CRC staging and aid selection of
alternative treatments.

In summary, CRCNet can achieve high performance in dif-
ferentiating CRC from benign diseases such as adenomas and
polyps. CRCNet achieved consistent and robust performance in
identifying CRC patients across three test sets. Its performance
was comparable with a group of five skilled endoscopists. Pro-
spective randomized clinical trials are required to test the per-
formance of this model in real-world clinical settings.

Methods
Study design and participants. We did retrospective, multicohort, diagnostic
study using colonoscopic images from three tertiary hospitals in China. We
retrieved colonoscopic images from Medical Imaging Database as training set at
TCH between August 2011 and March 2019. We used images from patients who
received colonoscopic examination between April 2019 and May 2019 at TCH as
internal test sets, January 2018 and February 2019 at TFCH as first external test set,
and January 2018 and December 2018 at TGH as the second external test set. All
images and pathological examination reports were deidentified before they were
transferred to investigators. All CRC patients and 56.1% (5050/9003) of controls in
the training set and all patients in three test sets underwent surgical resection or
endoscopy-guided biopsy, therefore, they had pathological examination as gold
standard to diagnose CRC. The training set and test sets were obtained from real-
world colonoscopic imaging cohort. The control group included patients diagnosed
with normal mucosa, adenoma, polyps, familial adenomatous polyposis syndrome,
inflammatory bowel disease, and chronic mucosal inflammation. The CRC patient
group consisted of patients diagnosed with solitary tumor. We excluded other rare
malignant diseases such as sarcoma, melanoma, gastrointestinal stromal tumor,
lymphoma, and carcinoid tumor. All patients included in this study were 18 years
of age or older. Surgically resected CRC tumors were staged according to the 7th

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16777-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2961 | https://doi.org/10.1038/s41467-020-16777-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


edition of TNM staging system stipulated by American Joint Committee on
Cancer. Pathological examination was used as gold standard to diagnose CRC.

Pathological examination of surgical or biopsy samples was used to measure the
performance of CRCNet in distinguishing between malignant and benign diseases
at patient level. Pathologists B.S., L.S., and X.G. retrieved and reviewed pathologic
information from the pathologic system. Consensual interpretation of images from
CRC patients by five endoscopists in each test set was used to measure the
performance of CRCNet in differentiating malignancy and benignity at the image
level. Each endoscopist has at least 6 years of working experience. All these five
endoscopists have ≥1000 colonscopic examinations. The optical diagnosis of these
five endoscopists were estimated to range from 85 to 95% based on their self-
reported performance. For the two external TFCH and TGH test sets, all CRC
patients and a random subset of 200 controls were selected and interpreted by
endoscopists. For the internal TCH test set, all CRC patients and controls were
interpreted by endoscopists. These five endoscopists were asked to classify each
selected patient as CRC or control based on their clinical experience.

This study was approved by the Institutional Review Board (IRB) of Tianjin
Medical University Cancer Institute and Hospital and conducted in accordance
with Declaration of Helsinki. Informed consent from CRC patients and
noncancerous controls was exempted by the IRB because of the retrospective
nature of this study.

Curation of colonoscopic images. All images obtained from imaging databases at
three hospitals were in jpeg format. All images were generated by high definition
instruments (Olympus CF-HQ2, PCF-Q260JI, Tokyo, Japan) after standard bowel
preparation. The white-light and NBI modalities were used. However, we included
only the white-light images in this study. For patients diagnosed with CRC in the
training set, five endoscopists were asked to manually review all the images and
classify them into benign or malignant images based on their clinical experience.
These five endoscopists read images individually and images manifested malignant
lesions were included. Images featured by benign characteristics and images from
normal mucosa were combined with those from non-CRC patients to serve as
negative samples. Correspondingly, images from CRC patients featured by
malignant characteristics were used as positive samples. Low quality images such as
motion-blurring, blank, out-of-focus, or poor bowel preparation images (n=
13,522) were excluded during manual inspection. In the test sets, all images from
each patient were used to measure the performance of CRCNet and endoscopists.

Model development. CRCNet is a dense convolutional network27 of 169 layers
trained on the colonoscopic images and their corresponding labels (e.g., benignity
or malignancy based on pathological report). The dense convolutional network
connects each layer to every other layers in a feed-forward manner27, which
improves information flow and enables new feature exploration. For each layer, it
takes all features learned all preceding layers as inputs, and its outputs are fed into
all subsequent layers. Such dense connections can alleviate gradient vanishing,
improve feature propagation and reuse, and reduce number of parameters27.
CRCNet consists of densely connected blocks. Each dense block consists of densely
connected layers that composed of batch normalization, activation function, and
convolution. The first, second, third, and fourth dense block consists of 6, 12, 32,
and 32 densely connected layers, respectively. Dense blocks were connected by
transition layers that used to adjust the dimension of feature-map size via con-
volution and pooling. The architecture of this network was provided as Supple-
mentary Fig. 9. We initialized the weights of CRCNet from the same network that
has been trained on the ImageNet28 data set except the last fully connected layer.
The output unit of the last fully connected layer was set to two to match the
number of classes in this study and its weight was randomly initialized. We trained
CRCNet in an end-to-end fashion with stochastic gradient descent using an initial
learning rate of 0.001, momentum of 0.9, weight decay of 0.0001, and a minibatch
of 32. The learning rate was decayed by 0.1 after every 20 epochs. CRCNet was
trained for 80 iterations. We used focal loss26 as the objective function to train
CRCNet to mitigate the sparsity of the positive examples (i.e., malignant images) as
compared with negative controls (i.e., benign plus normal images). We applied on-
the-fly data augmentation during training to virtually increase data diversity
observed in the real world. On-the-fly data augmentation employed in this study
include random resize and crop, perspective, horizontal flip, rotation, color jit-
tering, and lighting noise15. We used a random subset of images, which was not
included during training, to calculate the loss of model at the end of each epoch.
We selected model with lowest loss as the best model and evaluated its perfor-
mance on test sets. The whole procedures were provided as Supplementary Data 6.
CRCNet was developed with Python (version 3.7.1), PyTorch (version 1.3.0), and
torchvision (version 0.5.0).

Visual explanation. We used Grad-CAM21 to derive visual explanation by loca-
lizing the image area that most influences the decision made by CRCNet. We also
used Guided Grad-CAM21 to quantify pixel contribution to the final predicted
classification output.

Calculation of malignancy score. We calculated predicted malignancy score for
each individual as the weighted mean of log10-transformed predicted probabilities

of input images. For a given individual, we denoted n as the total number of images
available from that individual and pmalignancy ¼ p1; p2; ¼ ; pn

� �
as the predicted

probabilities of these n images being classified as malignancy. The predicted
malignancy score θ for that individual was calculated as

θ ¼ � w1 ´ log10 1� p1
� �þ w2 ´ log10 1� p2

� �þ � � � þ wn ´ log10 1� pn
� �� �

=n;

ð1Þ
where wi is calculated as wi ¼ pi= p1 þ p2 þ ¼ þ pn

� �
:

The performance of CRCNet was evaluated on three test sets. We also evaluated
the performance of CRCNet in identifying CRC from left-sided (descending and
sigmoid colon), right-sided (ascending and transverse colon), and rectal locations.
At the patient level, we compared the performance of CRCNet versus five
endoscopists on these test sets. In addition, we asked these five endoscopists to
manually review the false negatives with low predicted malignancy scores and false
positives with high predicted malignancy scores. At the image level, we used
consensus interpretation of images from CRC patients in these three test sets by
these five endoscopists to measure the classification performance of CRCNet.

Statistical analysis. We used PR curve and ROC curve to describe the classifi-
cation ability of CRCNet. The PRC was demonstrated to be more informative than
receiver-operating curve on imbalanced datasets29. We created the PR curve by
plotting recall rate (also known as sensitivity) against precision (also known as
positive predictive rate) by varying the predicted probability threshold. The ROC
curve was created by plotting recall rate against negative predictive rate (also
known as specificity). We used kappa coefficient to measure the inter-rater
agreement and agreement between prediction output and pathological examina-
tion. The F1 metric is defined as harmonic mean between precision and recall rate,
which is calculated as F1= 2 × precision × recall/(precision+ recall). The 95%
confidence intervals for sensitivity, specificity, positive predictive rate, and negative
predicted rate were calculated by the Clopper–Pearson method30. We plotted PR
curve and calculated the AUPRC with R package PRROC31 (version 1.3.1). We
plotted the ROC curve and AUROC with R package pROC (version 1.10.0). We
calculated the interendoscopists agreement rate and Fleiss’ kappa using R package
irr (version 0.84). Statistical analysis was conducted with R software (version 3.4.3).
We used AUPRC as the primary outcome to measure performance of CRCNet. We
used precision, recall rate and F1 score when comparing the classification ability of
CRCNet with endoscopists.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files. Restrictions apply to the
availability of the training and test sets, which were used with permission for the current
study, and so are not publicly available. Databases used include Colonoscopic Imaging
Databases and ImageNet (http://www.image-net.org/).

Code availability
The code used to train and evaluate the model is available on GitHub (https://github.
com/lixiangchun/AIplus/tree/master/CRCNet).
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